The Correlation between Subolesin-Reactive Epitopes and Vaccine Efficacy

Author:

Contreras MarinelaORCID,Kasaija Paul D.,Kabi Fredrick,Mugerwa Swidiq,De la Fuente JoséORCID

Abstract

Vaccination is an environmentally-friendly alternative for tick control. The tick antigen Subolesin (SUB) has shown protection in vaccines for the control of multiple tick species in cattle. Additionally, recent approaches in quantum vaccinomics have predicted SUB-protective epitopes and the peptide sequences involved in protein–protein interactions in this tick antigen. Therefore, the identification of B-cell–reactive epitopes by epitope mapping using a SUB peptide array could be essential as a novel strategy for vaccine development. Subolesin can be used as a model to evaluate the effectiveness of these approaches for the identification of protective epitopes related to vaccine protection and efficacy. In this study, the mapping of B-cell linear epitopes of SUB from three different tick species common in Uganda (Rhipicephalus appendiculatus, R. decoloratus, and Amblyomma variegatum) was conducted using serum samples from two cattle breeds immunized with SUB-based vaccines. The results showed that in cattle immunized with SUB from R. appendiculatus (SUBra) all the reactive peptides (Z-score > 2) recognized by IgG were also significant (Z-ratio > 1.96) when compared to the control group. Additionally, some of the reactive peptides recognized by IgG from the control group were also recognized in SUB cocktail–immunized groups. As a significant result, cattle groups that showed the highest vaccine efficacy were Bos indicus immunized with a SUB cocktail (92%), and crossbred cattle were immunized with SUBra (90%) against R. appendiculatus ticks; the IgG from these groups recognized overlapping epitopes from the peptide SPTGLSPGLSPVRDQPLFTFRQVGLICERMMKERESQIRDEYDHVLSAKLAEQYDTFVKFTYDQKRFEGATPSYLS (Z-ratio > 1.96), which partially corresponded to a Q38 peptide and the SUB protein interaction domain. These identified epitopes could be related to the protection and efficacy of the SUB-based vaccines, and new chimeras containing these protective epitopes could be designed using this new approach.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference64 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3