A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination

Author:

Kuechler Anna SabrinaORCID,Weinhold Sandra,Boege Fritz,Adams Ortwin,Müller Lisa,Babor Florian,Bennstein Sabrina B.,Pham T.-X. Uyen,Hejazi MaryamORCID,Reusing Sarah B.,Hermsen Derik,Uhrberg MarkusORCID,Schulze-Bosse Karin

Abstract

Purpose: We describe a diagnostic procedure suitable for scheduling (re-)vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) according to individual state of humoral immunization. Methods: To clarify the relation between quantitative antibody measurements and humoral ex vivo immune responsiveness, we monitored 124 individuals before, during and six months after vaccination with Spikevax (Moderna, Cambridge, MA, USA). Antibodies against SARS-CoV-2 spike (S1) protein receptor-binding domain (S1-AB) and against nucleocapsid antigens were measured by chemiluminescent immunoassay (Roche). Virus-neutralizing activities were determined by surrogate assays (NeutraLISA, Euroimmune; cPass, GenScript). Neutralization of SARS-CoV-2 in cell culture (full virus NT) served as an ex vivo correlate for humoral immune responsiveness. Results: Vaccination responses varied considerably. Six months after the second vaccination, participants still positive for the full virus NT were safely determined by S1-AB levels ≥1000 U/mL. The full virus NT-positive fraction of participants with S1-AB levels <1000 U/mL was identified by virus-neutralizing activities >70% as determined by surrogate assays (NeutraLISA or cPas). Participants that were full virus NT-negative and presumably insufficiently protected could thus be identified by a sensitivity of >83% and a specificity of >95%. Conclusion: The described diagnostic strategy possibly supports individualized (re-)vaccination schedules based on simple and rapid measurement of serum-based SARS-CoV-2 antibody levels. Our data apply only to WUHAN-type SARS-CoV-2 virus and the current version of the mRNA vaccine from Moderna (Cambridge, MA, USA). Adaptation to other vaccines and more recent SARS-CoV-2 strains will require modification of cut-offs and re-evaluation of sensitivity/specificity.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3