Abstract
Secondary bacterial pneumonia is responsible for significant morbidity and mortality during seasonal and pandemic influenza. Due to the unpredictability of influenza A virus evolution and the time-consuming process of manufacturing strain-specific influenza vaccines, recent efforts have been focused on developing anti-Streptococcus pneumoniae immunity to prevent influenza-related illness and death. Bacterial vaccination to prevent viral-bacterial synergistic interaction during co-infection is a promising concept that needs further investigation. Here, we show that immunization with pneumococcal surface protein A (PspA) fully protects mice against low-dose, but not high-dose, secondary bacterial challenge using a murine model of influenza A virus-S. pneumoniae co-infection. We further show that immunization with PspA is more broadly protective than the pneumococcal conjugate vaccine (Prevnar). These results demonstrate that PspA is a promising vaccine target that can provide protection against a physiologically relevant dose of S. pneumoniae following influenza infection.
Funder
National Institute of Allergy and Infectious Diseases
American Heart Association
Subject
Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献