Cytokine and Chemokine Production in Mice Inoculated with NVX-CoV2373 (Nuvaxovid®) in Comparison with Omicron BA.4/5 Bivalent BNT162b2 (Comirnaty®)

Author:

Nakayama Tetsuo1ORCID,Ito Takashi12,Ishiyama Ryoka3,Katayama Kazuhiko1ORCID

Affiliation:

1. Laboratory of Viral Infection, Ömura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan

2. Department of Pediatrics, Kitasato University Hospital, Sagamihara 252-0329, Japan

3. Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan

Abstract

A recombinant SARS-CoV-2 spike protein vaccine (NVX-CoV2373) has been licensed and has a lesser incidence of adverse events. To know the immunological mechanisms of adverse events, the production of cytokines and chemokines was investigated in mice inoculated with NVX-CoV2373. Serum IL-6 was detected on Day 1 of the first and second doses and the IFN-γ, IL-4, IL-10, TNF-α, and IL-6 levels increased on Day 1 of the second dose at the inoculation site. The enhanced production of the inflammatory chemokines (CCL2), homeostatic chemokine (CXCL13), and Th2 chemokine (CCL17) was observed at the inoculation site on Day 1 of the second dose. These findings were compared with data obtained following inoculation with BNT162b2 bivalent vaccine containing omicron BA.4/5. Significantly lower levels of inflammatory chemokines were detected on Day 1 after the first dose of NVX-CoV2373 in sera and inoculation site than those following inoculation with bivalent BNT162b2 (p < 0.01), reflecting a lower incidence of adverse events after immunization with NVX-CoV2373 in humans. NVX-CoV2373 induced significantly higher concentrations of IFN-γ, TNF-α, and IL-10 at the inoculation site obtained on Day 1 of the second dose (p < 0.05). Significant higher levels of Th2 chemokines, CCL11 and CCL17, were induced at the inoculation site on Day 1 of the second dose (p < 0.01) and they explain the booster IgG EIA antibody response after the second dose of NVX-CoV2373.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3