GSK-3β in Dendritic Cells Exerts Opposite Functions in Regulating Cross-Priming and Memory CD8 T Cell Responses Independent of β-Catenin

Author:

Fu Chunmei123,Wang Jie123ORCID,Ma Tianle4ORCID,Yin Congcong123ORCID,Zhou Li1235ORCID,Clausen Björn E.6ORCID,Mi Qing-Sheng1235ORCID,Jiang Aimin123ORCID

Affiliation:

1. Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA

2. Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA

3. Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA

4. Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA

5. Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA

6. Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany

Abstract

GSK-3β plays a critical role in regulating the Wnt/β-catenin signaling pathway, and manipulating GSK-3β in dendritic cells (DCs) has been shown to improve the antitumor efficacy of DC vaccines. Since the inhibition of GSK-3β leads to the activation of β-catenin, we hypothesize that blocking GSK-3β in DCs negatively regulates DC-mediated CD8 T cell immunity and antitumor immunity. Using CD11c-GSK-3β−/− conditional knockout mice in which GSK-3β is genetically deleted in CD11c-expressing DCs, we surprisingly found that the deletion of GSK-3β in DCs resulted in increased antitumor immunity, which contradicted our initial expectation of reduced antitumor immunity due to the presumed upregulation of β-catenin in DCs. Indeed, we found by both Western blot and flow cytometry that the deletion of GSK-3β in DCs did not lead to augmented expression of β-catenin protein, suggesting that GSK-3β exerts its function independent of β-catenin. Supporting this notion, our single-cell RNA sequencing (scRNA-seq) analysis revealed that GSK-3β-deficient DCs exhibited distinct gene expression patterns with minimally overlapping differentially expressed genes (DEGs) compared to DCs with activated β-catenin. This suggests that the deletion of GSK-3β in DCs is unlikely to lead to upregulation of β-catenin at the transcriptional level. Consistent with enhanced antitumor immunity, we also found that CD11c-GSK-3β−/− mice exhibited significantly augmented cross-priming of antigen-specific CD8 T cells following DC-targeted vaccines. We further found that the deletion of GSK-3β in DCs completely abrogated memory CD8 T cell responses, suggesting that GSK-3β in DCs also plays a negative role in regulating the differentiation and/or maintenance of memory CD8 T cells. scRNA-seq analysis further revealed that although the deletion of GSK-3β in DCs positively regulated transcriptional programs for effector differentiation and function of primed antigen-specific CD8 T cells in CD11c-GSK-3β−/− mice during the priming phase, it resulted in significantly reduced antigen-specific memory CD8 T cells, consistent with diminished memory responses. Taken together, our data demonstrate that GSK-3β in DCs has opposite functions in regulating cross-priming and memory CD8 T cell responses, and GSK-3β exerts its functions independent of its regulation of β-catenin. These novel insights suggest that targeting GSK-3β in cancer immunotherapies must consider its dual role in CD8 T cell responses.

Funder

Henry Ford Health System

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3