Nonreciprocity in CHIKV and MAYV Vaccine-Elicited Protection

Author:

Weber Whitney C.12ORCID,Andoh Takeshi F.1,Kreklywich Craig N.1,Streblow Zachary J.1,Denton Michael1,Streblow Magdalene M.1,Powers John M.1ORCID,Sulgey Gauthami1ORCID,Medica Samuel1,Dmitriev Igor3ORCID,Curiel David T.3ORCID,Haese Nicole N.1,Streblow Daniel N.14ORCID

Affiliation:

1. Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA

2. Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA

3. Cancer Biology Division, Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA

4. Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006, USA

Abstract

Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the ability of a non-replicating human adenovirus (AdV)-vectored vaccine expressing the MAYV structural polyprotein to protect against disease in mice following challenge with MAYV, CHIKV and UNAV. Herein, we evaluated mouse immunity and protective efficacy for an AdV-CHIKV full structural polyprotein vaccine in combination with heterologous AdV-MAYV prime/boost regimens versus vaccine coadministration. Heterologous prime/boost regimens skewed immunity toward the prime vaccine antigen but allowed for a boost of cross-neutralizing antibodies, while vaccine co-administration elicited robust, balanced responses capable of boosting. All immunization strategies protected against disease from homologous virus infection, but reciprocal protective immunity differences were revealed upon challenge with heterologous viruses. In vivo passive transfer experiments reproduced the inequity in reciprocal cross-protection after heterologous MAYV challenge. We detected in vitro antibody-dependent enhancement of MAYV replication, suggesting a potential mechanism for the lack of cross-protection. Our findings provide important insights into rational alphavirus vaccine design that may have important implications for the evolving alphavirus vaccine landscape.

Funder

U.S. National Institute of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3