Immunological Response to Subcutaneous and Intranasal Administration of SARS-CoV-2 Spike Protein in Mice

Author:

Kinoshita Mao1ORCID,Muranishi Kentaro2,Kawaguchi Ken1,Sudo Kazuki1,Inoue Keita1,Ishikura Hiroyasu2ORCID,Sawa Teiji1ORCID

Affiliation:

1. Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan

2. Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0133, Japan

Abstract

In novel coronavirus infection (COVID-19), the outbreak of acute lung injury due to trans-airway infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the starting point of severe disease. The COVID-19 pandemic highlights the need for a vaccine that prevents not only the disease but also its infection. Currently, the SARS-CoV-2 vaccine is administered via intramuscular injection and is generally not immunogenic to the mucosa. As a result, current vaccinations fail to reduce viral shedding and transmission and ultimately do not prevent infection. We established a mouse vaccine model in which a single dose of S1 protein and aluminum oxide gel (alum) subcutaneous vaccine was followed by a booster dose of S1 protein and CpG oligodeoxynucleotide intranasal vaccine. The group that received two doses of the intranasal vaccine booster showed a significant increase in IgG and IgA antibody titers against S1 and RBD in serum and BAL, and a significant difference in neutralizing antibody titers, particularly in BAL. One intranasal vaccine booster did not induce sufficient immunity, and the vaccine strategy with two booster intranasal doses produced systemic neutralizing antibodies and mucus-neutralizing antibodies against SARS-CoV-2. It will be an important tool against the emergence of new viruses and the next pandemic.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3