The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development

Author:

Iwanowitsch Andreas1,Diessner Joachim2,Bergmann Birgit1ORCID,Rudel Thomas1

Affiliation:

1. Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany

2. Department of Obstetrics and Gynecology, University Hospital Würzburg, 97080 Würzburg, Germany

Abstract

Salmonella enterica Serovar Typhi Ty21a (Ty21a) is the only licensed oral vaccine against typhoid fever. Due to its excellent safety profile, it has been used as a promising vector strain for the expression of heterologous antigens for mucosal immunization. As the efficacy of any bacterial live vector vaccine correlates with its ability to express and present sufficient antigen, the genes for antigen expression are traditionally located on plasmids with antibiotic resistance genes for stabilization. However, for use in humans, antibiotic selection of plasmids is not applicable, leading to segregational loss of the antigen-producing plasmid. Therefore, we developed an oral Ty21a-based vaccine platform technology, the JMU-SalVac-system (Julius-Maximilians-Universität Würzburg) in which the antigen delivery plasmids (pSalVac-plasmid-series) are stabilized by a ΔtyrS/tyrS+-based balanced-lethal system (BLS). The system is made up of the chromosomal knockout of the essential tyrosyl-tRNA-synthetase gene (tyrS) and the in trans complementation of tyrS on the pSalVac-plasmid. Further novel functional features of the pSalVac-plasmids are the presence of two different expression cassettes for the expression of protein antigens. In this study, we present the construction of vaccine strains with BLS plasmids for antigen expression. The expression of cytosolic and secreted mRFP and cholera toxin subunit B (CTB) proteins as model antigens is used to demonstrate the versatility of the approach. As proof of concept, we show the induction of previously described in vivo inducible promoters cloned into pSalVac-plasmids during infection of primary macrophages and demonstrate the expression of model vaccine antigens in these relevant human target cells. Therefore, antigen delivery strains developed with the JMU-SalVac technology are promising, safe and stable vaccine strains to be used against mucosal infections in humans.

Funder

German Ministry of Science and Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3