IgM+ and IgT+ B Cell Traffic to the Heart during SAV Infection in Atlantic Salmon

Author:

Bakke Anne Flore,Bjørgen HåvardORCID,Koppang Erling Olaf,Frost Petter,Afanasyev SergeyORCID,Boysen PrebenORCID,Krasnov Aleksei,Lund Hege

Abstract

B cells of teleost fish differentiate in the head kidney, and spleen, and either remain in the lymphatic organs or move to the blood and peripheral tissues. There is limited knowledge about piscine B cell traffic to sites of vaccination and infection and their functional roles at these sites. In this work, we examined the traffic of B cells in Atlantic salmon challenged with salmonid alphavirus (SAV). In situ hybridization (RNAScope) showed increased numbers of immunoglobin (Ig)M+ and IgT+ B cells in the heart in response to SAV challenge, with IgM+ B cells being most abundant. An increase in IgT+ B cells was also evident, indicating a role of IgT+ B cells in nonmucosal tissues and systemic viral infections. After infection, B cells were mainly found in the stratum spongiosum of the cardiac ventricle, colocalizing with virus-infected myocardial-like cells. From sequencing the variable region of IgM in the main target organ (heart) and comparing it with a major lymphatic organ (the spleen), co-occurrence in antibody repertoires indicated a transfer of B cells from the spleen to the heart, as well as earlier recruitment of B cells to the heart in vaccinated fish compared to those that were unvaccinated. Transcriptome analyses performed at 21 days post-challenge suggested higher expression of multiple mediators of inflammation and lymphocyte-specific genes in unvaccinated compared to vaccinated fish, in parallel with a massive suppression of genes involved in heart contraction, metabolism, and development of tissue. The adaptive responses to SAV in vaccinated salmon appeared to alleviate the disease. Altogether, these results suggest that migration of B cells from lymphatic organs to sites of infection is an important part of the adaptive immune response of Atlantic salmon to SAV.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3