Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications

Author:

Karunakaran Bharathi1,Gupta Raghav1,Patel Pranav1,Salave Sagar1ORCID,Sharma Amit1ORCID,Desai Dhruv2ORCID,Benival Derajram1,Kommineni Nagavendra3ORCID

Affiliation:

1. National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India

2. School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Center for Biomedical Research, Population Council, New York, NY 10065, USA

Abstract

Lipid-based vaccine delivery systems such as the conventional liposomes, virosomes, bilosomes, vesosomes, pH-fusogenic liposomes, transferosomes, immuno-liposomes, ethosomes, and lipid nanoparticles have gained a remarkable interest in vaccine delivery due to their ability to render antigens in vesicular structures, that in turn prevents its enzymatic degradation in vivo. The particulate form of lipid-based nanocarriers confers immunostimulatory potential, making them ideal antigen carriers. Facilitation in the uptake of antigen-loaded nanocarriers, by the antigen-presenting cells and its subsequent presentation through the major histocompatibility complex molecules, leads to the activation of a cascade of immune responses. Further, such nanocarriers can be tailored to achieve the desired characteristics such as charge, size, size distribution, entrapment, and site-specificity through modifications in the composition of lipids and the selection of the appropriate method of preparation. This ultimately adds to its versatility as an effective vaccine delivery carrier. The current review focuses on the various lipid-based carriers that have been investigated to date as potential vaccine delivery systems, the factors that affect their efficacy, and their various methods of preparation. The emerging trends in lipid-based mRNA vaccines and lipid-based DNA vaccines have also been summarized.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3