A Mathematical Model to Study the Potential Hepatitis B Virus Infections and Effects of Vaccination Strategies in China

Author:

Xu Chuanqing1ORCID,Wang Yu1,Cheng Kedeng1,Yang Xin1,Wang Xiaojing1,Guo Songbai1,Liu Maoxing1,Liu Xiaoling2

Affiliation:

1. School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Mathematics Department, Hanshan Normal University, Chaozhou 521041, China

Abstract

Motivations: Hepatitis B is a potentially life-threatening infectious disease caused by the hepatitis B virus (HBV). Approximately 390,000 people in China die from HBV-related diseases each year. Around 86 million individuals suffer from infections of the hepatitis B virus, accounting for about 6% of the total population in the region. There are approximately 30 million chronic infections. From 2002 to 2007, China’s government took part in “The Global Alliance for Vaccines and Immunization (GAVI)” initiative, which helped reduce cases of chronic HBV infections among children. However, incidences of hepatitis B remain persistently high in China. Accurately estimating the number of potential HBV infections is crucial for preventing and controlling the transmission of the hepatitis B virus. Up until now, there were no studies of potentially infectious hepatitis B virus infections. Methods: this study was based on data from the National Bureau of Statistics of China from 2003 to 2021; a dynamic model was built, which included a compartment for potentially infectious hepatitis B virus infections. The parameters in the model were fitted using a combination of nonlinear least-squares and genetic algorithm methods. Results: the calculated reproduction number for hepatitis B virus transmission within the population is Rc = 1.741. Considering the existing vaccine inefficiency rate of 0.1, the model estimates there are 449,535 (95%CI [415,651, 483,420]) potentially infectious hepatitis B virus infections, constituting 30.49% of total hepatitis B cases. Date fitting using MATLAB reveals that increasing the rate of hepatitis B vaccinations can effectively reduce the number of infections. Conclusions: the results reveal that the number of potential infectious hepatitis B virus infections is so high that the number of hepatitis B patients persistently rises in China. To better control the transmission of the hepatitis B virus, an optional prevention and control strategy is needed to increase the vaccination of different age groups, and it is necessary to help the public correctly understand the transmission of hepatitis B and ensure adequate protection.

Funder

the Educational Commission of Guangdong Province

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference25 articles.

1. Research on Improved Dynamic Models of Hepatitis B virus;Dong;Sci. Technol. Bull.,2011

2. (2023, June 02). World Health Organization. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/hepatitis-b.

3. (2023, June 02). National Health Commission of the People’s Republic of China. Available online: http://zs.kaipuyun.cn/s.

4. The GAVI project in China;Wang;China Public Health Manag.,2004

5. Observation on the immunization effect of two domestic recombinant Hepatitis B vaccines;Huang;Chin. J. Public Health Manag.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3