Affiliation:
1. SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
2. Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
Abstract
The S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze various substrates, including nucleic acids, proteins, oligopeptides, polysaccharides, and some other molecules. In this study, antibody fractions with affinity for RBD and S-protein (RBD-IgG and S-IgG) were isolated from the blood of COVID-19 patients vaccinated with Sputnik V. The fractions were analyzed for their potential to hydrolyze 18-mer oligopeptides corresponding to linear fragments of the SARS-CoV-2 S-protein. Here, we show that the IgG antibodies hydrolyze six out of nine oligopeptides efficiently, with the antibodies of COVID-19-exposed donors demonstrating the most significant activity. The IgGs of control donors not exposed to SARS-CoV-2 were found to be inactive in oligopeptide hydrolysis. The antibodies of convalescents and vaccinated patients were found to hydrolyze oligopeptides in a wide pH range, with the optimal pH range between 6.5 and 7.5. The hydrolysis of most oligopeptides by RBD-IgG antibodies is inhibited by thiol protease inhibitors, whereas S-IgG active centers generally combine several types of proteolytic activities. Ca2+ ions increase the catalytic activity of IgG preparations containing metalloprotease-like active centers. Thus, the proteolytic activity of natural antibodies against the SARS-CoV-2 protein is believed to be due to the similarity of catalytic antibodies’ active centers to canonical proteases. This work raises the question of the possible physiological role of proteolytic natural RBD-IgG and S-IgG resulting from vaccination and exposure to COVID-19.
Funder
Russian Science Foundation
Russian State-funded budget project of ICBFM SB RAS
Subject
Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology
Reference52 articles.
1. Medicinal Product Development and Regulatory Agilities Implemented During the Early Phases of the COVID-19 Pandemic: Experiences and Implications for the Future—An Industry View;Geraci;Ther. Innov. Regul. Sci.,2023
2. Factors, enablers and challenges for COVID-19 vaccine development;Excler;BMJ Glob. Health,2023
3. Tracking the COVID-19 vaccines: The global landscape;Yadav;Hum. Vaccines Immunother.,2023
4. Efficacy and safety of COVID-19 vaccines;Ghosn;Cochrane Database Syst. Rev.,2022
5. Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: A test-negative, case-control study;Andrews;Lancet Infect. Dis.,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献