A New Epitope Selection Method: Application to Design a Multi-Valent Epitope Vaccine Targeting HRAS Oncogene in Squamous Cell Carcinoma

Author:

Savsani Kush,Jabbour GabrielORCID,Dakshanamurthy SivanesanORCID

Abstract

We developed an epitope selection method for the design of MHC targeting peptide vaccines. The method utilizes predictions for several clinical checkpoint filters, including binding affinity, immunogenicity, antigenicity, half-life, toxicity, IFNγ release, and instability. The accuracy of the prediction tools for these filter variables was confirmed using experimental data obtained from the Immune Epitope Database (IEDB). We also developed a graphical user interface computational tool called ‘PCOptim’ to assess the success of an epitope filtration method. To validate the filtration methods, we used a large data set of experimentally determined, immunogenic SARS-CoV-2 epitopes, which were obtained from a meta-analysis. The validation process proved that placing filters on individual parameters was the most effective method to select top epitopes. For a proof-of-concept, we designed epitope-based vaccine candidates for squamous cell carcinoma, selected from the top mutated epitopes of the HRAS gene. By comparing the filtered epitopes to PCOptim’s output, we assessed the success of the epitope selection method. The top 15 mutations in squamous cell carcinoma resulted in 16 CD8 epitopes which passed the clinical checkpoints filters. Notably, the identified HRAS epitopes are the same as the clinical immunogenic HRAS epitope-based vaccine candidates identified by the previous studies. This indicates further validation of our filtration method. We expect a similar turn-around for the other designed HRAS epitopes as a vaccine candidate for squamous cell carcinoma. Furthermore, we obtained a world population coverage of 89.45% for the top MHC Class I epitopes and 98.55% population coverage in the absence of the IFNγ release clinical checkpoint filter. We also identified some of the predicted human epitopes to be strong binders to murine MHC molecules, which provides insight into studying their immunogenicity in preclinical models. Further investigation in murine models could warrant the application of these epitopes for treatment or prevention of squamous cell carcinoma.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3