Intensity of Humoral Immune Responses, Adverse Reactions, and Post-Vaccination Morbidity after Adenovirus Vector-Based and mRNA Anti-COVID-19 Vaccines

Author:

Voulgaridi IoannaORCID,Sarrou StylianiORCID,Dadouli AikateriniORCID,Peristeri Athanasia-Marina,Nasika Asimina,Onoufriadis Ilias,Kyritsi Maria A.ORCID,Anagnostopoulos Lemonia,Theodoridou Aikaterini,Avakian IoannaORCID,Pappa Dimitra,Konstantinou Adamos-KonstantinosORCID,Papadamou Georgia,Mouchtouri Varvara A.ORCID,Petinaki Efi,Speletas MatthaiosORCID,Hadjichristodoulou Christos

Abstract

The aim of the study was to compare mRNA vaccine BNT162b2 with adenovirus vector- based vaccines in terms of presence of adverse reactions, immunogenicity, and protection against COVID-19. A total of 270 individuals were enrolled, of which 135 were vaccinated with adenovirus vector-based vaccines and compared with 135 age- and sex-matched participants who received the BNT162b2 mRNA vaccine. Serum sampling was performed on all participants on days 21, 42, 90, and 180 following the first dose, to evaluate anti-spike IgG and IgA responses. Antibodies were quantified by chemiluminescent microplate and ELISA assays. We demonstrate that both mRNA and adenovirus vector-based vaccines caused mild side-effects and were effective in inducing adequate antibody responses against SARS-CoV-2, although BNT162b2 was superior concerning the intensity of antibody responses and protection against severe COVID-19. Moreover, we identify that IgG and IgA responses depended primarily on both history of previous COVID-19 infection and vaccination platform used, with individuals immunized with a single-dose vaccine having lower antibody titers over time. Lastly, all vaccine platforms had limited side-effects, with the most frequent pain at the injection site. Our results provide useful information regarding antibody responses after vaccination with different vaccine platforms, which can be useful for public health vaccination strategies.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3