Serologically-Based Evaluation of Cross-Protection Antibody Responses among Different A(H1N1) Influenza Strains

Author:

Marchi SerenaORCID,Manini IlariaORCID,Kistner Otfried,Piu PietroORCID,Remarque Edmond J.,Manenti Alessandro,Biuso Fabrizio,Carli Tommaso,Lazzeri Giacomo,Montomoli Emanuele,Trombetta Claudia MariaORCID

Abstract

After the influenza H1N1 pandemic of 2009, the seasonal A/Brisbane/59/2007 strain was replaced by the A/California/07/2009 strain for the influenza virus vaccine composition. After several seasons with no indications on the occurrence of antigenic drift, A/Michigan/45/2015 was chosen as the H1N1 vaccine strain for the 2017/2018 season. Since the immune response to influenza is shaped by the history of exposure to antigenically similar strains, the potential cross-protection between seasonal human influenza vaccine strains and the emerging pandemic strains was investigated. Human serum samples were tested by hemagglutination inhibition and single radial hemolysis assays against A/Brisbane/59/2007, A/California/07/2009, and A/Michigan/45/2015 strains. Strong cross-reactions between A/California/07/2009 and A/Michigan/45/2015 strains were observed in 2009/2010, most likely induced by the start of the 2009 pandemic, and the subsequent post-pandemic seasons from 2010/2011 onward when A/California/07/2009 became the predominant strain. In the 2014/2015 season, population immunity against A/California/07/2009 and A/Michigan/45/2015 strains increased again, associated with strong cross-reactions. Whereas hemagglutination inhibition assay has a higher sensitivity for detection of new seasonal drift, the single radial hemolysis assay is an excellent tool for determining the presence of pre-existing immunity, allowing a potential prediction on the booster potential of influenza vaccines against newly emerging drifted strains.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3