Immune Evasion of SARS-CoV-2 Omicron Subvariants XBB.1.5, XBB.1.16 and EG.5.1 in a Cohort of Older Adults after ChAdOx1-S Vaccination and BA.4/5 Bivalent Booster

Author:

Machado Rafael Rahal Guaragna1ORCID,Candido Érika Donizetti1ORCID,Aguiar Andressa Simoes23,Chalup Vanessa Nascimento3,Sanches Patricia Romão2,Dorlass Erick Gustavo14,Amgarten Deyvid Emanuel4,Pinho João Renato Rebello456,Durigon Edison Luiz17ORCID,Oliveira Danielle Bruna Leal34ORCID

Affiliation:

1. Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil

2. Dom Pedro II Geriatric and Convalescent Hospital, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 02265-002, SP, Brazil

3. Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil

4. Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil

5. Laboratório de Medicina Laboratorial (LIM03), Department of Pathology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil

6. Laboratório de Gastroenterologia Clínica e Experimental (LIM07), Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil

7. Scientific Platform Pasteur-USP, São Paulo 05508-020, SP, Brazil

Abstract

The recently emerged SARS-CoV-2 Omicron sublineages, including the BA.2-derived XBB.1.5 (Kraken), XBB.1.16 (Arcturus), and EG.5.1 (Eris), have accumulated several spike mutations that may increase immune escape, affecting vaccine effectiveness. Older adults are an understudied group at significantly increased risk of severe COVID-19. Here we report the neutralizing activities of 177 sera samples from 59 older adults, aged 62–97 years, 1 and 4 months after vaccination with a 4th dose of ChAdOx1-S (Oxford/AstraZeneca) and 3 months after a 5th dose of Comirnaty Bivalent Original/Omicron BA.4/BA.5 vaccine (Pfizer-BioNTech). The ChAdOx1-S vaccination-induced antibodies neutralized efficiently the ancestral D614G and BA.4/5 variants, but to a much lesser extent the XBB.1.5, XBB.1.16, and EG.5.1 variants. The results showed similar neutralization titers between XBB.1.16 and EG.5.1 and were lower compared to XBB.1.5. Sera from the same individuals boosted with the bivalent mRNA vaccine contained higher neutralizing antibody titers, providing a better cross-protection against Omicron XBB.1.5, XBB.1.16 and EG.5.1 variants. Previous history of infection during the epidemiological waves of BA.1/BA.2 and BA.4/BA.5, poorly enhanced neutralization activity of serum samples against XBBs and EG.5.1 variants. Our data highlight the continued immune evasion of recent Omicron subvariants and support the booster administration of BA.4/5 bivalent vaccine, as a continuous strategy of updating future vaccine booster doses to match newly emerged SARS-CoV-2 variants.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3