Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts

Author:

Ng Qin Xiang12ORCID,Lee Dawn Yi Xin3ORCID,Ng Clara Xinyi4ORCID,Yau Chun En4,Lim Yu Liang2,Liew Tau Ming567ORCID

Affiliation:

1. Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore

2. MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore

3. School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK

4. NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore

5. Department of Psychiatry, Singapore General Hospital, Singapore 169608, Singapore

6. SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore

7. Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore

Abstract

Several countries are witnessing significant increases in influenza cases and severity. Despite the availability, effectiveness and safety of influenza vaccination, vaccination coverage remains suboptimal globally. In this study, we examined the prevailing negative sentiments related to influenza vaccination via a deep learning analysis of public Twitter posts over the past five years. We extracted original tweets containing the terms ‘flu jab’, ‘#flujab’, ‘flu vaccine’, ‘#fluvaccine’, ‘influenza vaccine’, ‘#influenzavaccine’, ‘influenza jab’, or ‘#influenzajab’, and posted in English from 1 January 2017 to 1 November 2022. We then identified tweets with negative sentiment from individuals, and this was followed by topic modelling using machine learning models and qualitative thematic analysis performed independently by the study investigators. A total of 261,613 tweets were analyzed. Topic modelling and thematic analysis produced five topics grouped under two major themes: (1) criticisms of governmental policies related to influenza vaccination and (2) misinformation related to influenza vaccination. A significant majority of the tweets were centered around perceived influenza vaccine mandates or coercion to vaccinate. Our analysis of temporal trends also showed an increase in the prevalence of negative sentiments related to influenza vaccination from the year 2020 onwards, which possibly coincides with misinformation related to COVID-19 policies and vaccination. There was a typology of misperceptions and misinformation underlying the negative sentiments related to influenza vaccination. Public health communications should be mindful of these findings.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3