Nano-Pulse Treatment Overcomes the Immunosuppressive Tumor Microenvironment to Elicit In Situ Vaccination Protection against Breast Cancer

Author:

Nanajian Anthony12ORCID,Scott Megan1,Burcus Niculina I.1,Ruedlinger Brittney L.1,Oshin Edwin A.13,Beebe Stephen J.1ORCID,Guo Siqi1ORCID

Affiliation:

1. Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA

2. Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

3. Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA

Abstract

We previously reported that nano-pulse treatment (NPT), a pulsed power technology, resulted in 4T1-luc mammary tumor elimination and a strong in situ vaccination, thereby completely protecting tumor-free animals against a second live tumor challenge. The mechanism whereby NPT mounts effective antitumor immune responses in the 4T1 breast cancer predominantly immunosuppressive tumor microenvironment (TME) remains unanswered. In this study, orthotopic 4T1 mouse breast tumors were treated with NPT (100 ns, 50 kV/cm, 1000 pulses, 3 Hz). Blood, spleen, draining lymph nodes, and tumors were harvested at 4-h, 8-h, 1-day, 3-day, 7-day, and 3-month post-treatment intervals for the analysis of frequencies, death, and functional markers of various immune cells in addition to the suppressor function of regulatory T cells (Tregs). NPT was verified to elicit strong in situ vaccination (ISV) against breast cancer and promote both acute and long-term T cell memory. NPT abolished immunosuppressive dominance systemically and in the TME by substantially reducing Tregs, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). NPT induced apoptosis in Tregs and TAMs. It also functionally diminished the Treg suppression capacity, explained by the downregulation of activation markers, particularly 4-1BB and TGFβ, and a phenotypic shift from predominantly activated (CD44+CD62L−) to naïve (CD44−CD62L+) Tregs. Importantly, NPT selectively induced apoptosis in activated Tregs and spared effector CD4+ and CD8+ T cells. These changes were followed by a concomitant rise in CD8+CD103+ tissue-resident memory T cells and TAM M1 polarization. These findings indicate that NPT effectively switches the TME and secondary lymphatic systems from an immunosuppressive to an immunostimulatory state, allowing cytotoxic T cell function and immune memory formation to eliminate cancer cells and account for the NPT in situ vaccination.

Funder

National Cancer Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3