Abstract
In this paper, an SVIR epidemic model with temporary immunities and general incidence rates is constructed and analyzed. By utilizing Lyapunov functions, we prove the existence and uniqueness of the positive global solution of the constructed model, as well as the sufficient conditions of extinction and persistence of disease, are provided. Due to the difficulty of obtaining the analytical solution to our model, we construct two numerical schemes to generate an approximate solution to the model. The first one is called the split-step θ-Milstein (SSTM) method, and the second one is called the stochastic split-step θ-nonstandard finite difference (SSSNSFD) method, which is designed by merging split-step θ method with stochastic nonstandard finite difference method for the first time in this paper. Further, we prove the positivity, boundedness, and stability of the SSSTNSFD method. By employing the two mentioned methods, we support the validity of the studied theoretical results, as well, the effect of the length of immunity periods, parameters values of the incidence rates, and noise on the dynamics of the model are discussed and simulated. The increase in the size of time step size plays a vital role in revealing the method that preserves positivity, boundedness, and stability. To this end, a comparison between the proposed numerical methods is carried out graphically.
Subject
Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献