Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been approved for clinical use. SARS-CoV-2 neutralizing antibody titers after immunization are widely used as an evaluation indicator, and the roles of cellular immune responses in the protective efficacy of vaccines are rarely mentioned. However, therapeutic monoclonal neutralizing antibodies have shown limited efficacy in improving the outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19), suggesting a passive role of cellular immunity in SARS-CoV-2 vaccines. The synergistic effect of virus-specific humoral and cellular immune responses helps the host to fight against viral infection. In fact, it has been observed that the early appearance of specific T-cell responses is strongly correlated with mild symptoms of COVID-19 patients and that individuals with pre-existing SARS-CoV-2 nonstructural-protein-specific T cells are more resistant to SARS-CoV-2 infection. These findings suggest the important contribution of the cellular immune response to the fight against SARS-CoV-2 infection and severe COVID-19. Nowadays, new SARS-CoV-2 variants that can escape from the neutralization of antibodies are rapidly increasing. However, the epitopes of these variants recognized by T cells are largely preserved. Paying more attention to cellular immune responses may provide new instructions for designing effective vaccines for the prevention of severe disease induced by the break-through infection of new variants and the sequelae caused by virus latency. In this review, we deliberate on the role of cellular immunity against COVID-19 and summarize recent advances in the development of SARS-CoV-2 vaccines and the immune responses induced by vaccines to improve the design of new vaccines and immunization strategies.
Subject
Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology