Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections

Author:

Versteeg Leroy,Almutairi Mashal M.,Hotez Peter J.,Pollet Jeroen

Abstract

Despite medical progress, more than a billion people still suffer daily from parasitic infections. Vaccination is recognized as one of the most sustainable options to control parasitic diseases. However, the development of protective and therapeutic vaccines against tropical parasites has proven to be exceptionally challenging for both scientific and economic reasons. For certain parasitic diseases, traditional vaccine platforms are not well-suited, due to the complexity of the parasite life cycles and the parasite’s ability to evade the human immune system. An effective anti-parasite vaccine platform needs to have the ability to develop and test novel candidate antigens fast and at high-throughput; it further needs to allow for multivalent combinations and must evoke a strong and well-defined immune response. Anti-parasitic vaccines need to be safe and economically attractive, especially in the world’s low- and middle-income countries. This review evaluates the potential of in vitro transcribed mRNA vaccines as a new class of preventive and therapeutic vaccine technologies for parasitic infections.

Funder

Robert J. and Helen C. Kleberg Foundation

King Saud University

Texas Children's Hospital

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference99 articles.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3