Synthesis and Characterization of Agarose Hydrogels for Release of Diclofenac Sodium

Author:

Jarosz Anna1,Kapusta Oliwia1,Gugała-Fekner Dorota1,Barczak Mariusz1ORCID

Affiliation:

1. Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

Abstract

Hydrogels are attractive biomaterials for the controlled release of various pharmaceuticals, due to their ability to embed biologically active moieties in a 3D polymer network. Among them, agarose-based hydrogels are an interesting, but still not fully explored, group of potential platforms for controlled drug release. In this work, agarose hydrogels with various contents of citric acid were prepared, and their mechanical and physicochemical properties were investigated using various instrumental techniques, such as rheological measurements, attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR). Releasing tests for diclofenac sodium (DICL) were run in various environments; water, PBS, and 0.01 M NaOH; which remarkably affected the profile of the controlled release of this model drug. In addition to affecting the mechanical properties, the amount of citric acid incorporated within a hydrogel network during synthesis was also of great importance to the rate of DICL release. Therefore, due to their high biocompatibility, agarose hydrogels can be regarded as safe and potential platforms for controlled drug release in biomedical applications.

Funder

Polish National Science Centre

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3