Influence of Waste Glass Addition on the Fire Resistance, Microstructure and Mechanical Properties of Geopolymer Composites

Author:

Ziejewska Celina1ORCID,Grela Agnieszka2,Mierzwiński Dariusz1ORCID,Hebda Marek1ORCID

Affiliation:

1. Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

2. Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Abstract

Nowadays, humanity has to face the problem of constantly increasing amounts of waste, which cause not only environmental pollution but also poses a critical danger to human health. Moreover, the growth of landfill sites involves high costs of establishment, development, and maintenance. Glass is one of the materials whose recycling ratio is still insufficient. Therefore, in the presented work, the influence of the particle size and share of waste glass on the consistency, morphology, specific surface area, water absorption, setting time, and mechanical properties of geopolymers was determined. Furthermore, for the first time, the fire resistance and final setting time of such geopolymer composites were presented in a wide range. Based on the obtained results, it was found that the geopolymer containing 20% unsorted waste glass obtained a final setting time that was 44% less than the sample not containing waste glass, 51.5 MPa of compressive strength (135.2% higher than the reference sample), and 13.5 MPa of residual compressive strength after the fire resistance test (164.7% more than the reference sample). Furthermore, it was found that the final setting time and the total pore volume closely depended on the additive’s share and particle size. In addition, the use of waste glass characterized by larger particle sizes led to higher strength and lower mass loss after exposure to high temperatures compared to the composite containing smaller ones. The results presented in this work allow not only for reducing the costs and negative impact on the environment associated with landfilling but also for developing a simple, low-cost method of producing a modern geopolymer composite with beneficial properties for the construction industry.

Funder

ROAD TO EXCELLENCE—a comprehensive university support programme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3