Recent Advances and Outlook in 2D Nanomaterial-Based Flame-Retardant PLA Materials

Author:

Temane Lesego Tabea12ORCID,Orasugh Jonathan Tersur12ORCID,Ray Suprakas Sinha12ORCID

Affiliation:

1. Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa

2. Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa

Abstract

Poly (lactic acid) or polylactide (PLA) has gained widespread use in many industries and has become a commodity polymer. Its potential as a perfect replacement for petrochemically made plastics has been constrained by its extreme flammability and propensity to flow in a fire. Traditional flame-retardants (FRs), such as organo-halogen chemicals, can be added to PLA without significantly affecting the material’s mechanical properties. However, the restricted usage of these substances causes them to bioaccumulate and endanger plants and animals. Research on PLA flame-retardants has mostly concentrated on organic and inorganic substances for the past few years. Meanwhile, there has been a significant increase in renewed interest in creating environmentally acceptable flame-retardants for PLA to maintain the integrity of the polymer, which is the current trend. This article reviews recent advancements in novel FRs for PLA. The emphasis is on two-dimensional (2D) nanosystems and the composites made from them that have been used to develop PLA nanocomposite (NCP) systems that are flame retarding. The association between FR loadings and efficiency for different FR-PLA systems is also briefly discussed in the paper, as well as their influence on processing and other material attributes. It is unmistakably established from the literature that adding 2D nanoparticles to PLA matrix systems reduces their flammability by forming an intumescent char/carbonized surface layer. This creates a barrier effect that successfully blocks the filtration of volatiles and oxygen, heat and mass transfer, and the release of combustible gases produced during combustion.

Funder

Department of Science and Innovation

Council for Scientific and Industrial Research

University of Johannesburg

Publisher

MDPI AG

Subject

General Materials Science

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3