Abstract
The additive Gaussian white noise (AGWN) level in real-life images is usually unknown, for which the empirical setting will make the denoising methods over-smooth fine structures or remove noise incompletely. The previous noise level estimation methods are easily lost in accurately estimating them from images with complicated structures. To cope with this issue, we propose a novel noise level estimation scheme based on Chi-square distribution, including the following key points: First, a degraded image is divided into many image patches through a sliding window. Then, flat patches are selected by using a patch selection strategy on the gradient maps of those image patches. Next, the initial noise level is calculated by employing Chi-square distribution on the selected flat patches. Finally, the stable noise level is optimized by an iterative strategy. Quantitative, with association, to qualitative results of experiments on synthetic real-life images validate that the proposed noise level estimation method is effective and even superior to the state-of-the-art methods. Extensive experiments on noise removal using BM3D further illustrate that the proposed noise level estimation method is more beneficial for achieving favorable denoising performance with detail preservation.
Funder
National Natural Science Foundation of China
Graduate Innovative Fund of Wuhan Institute of Technology
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献