Abstract
Deep Learning (DL) and Artificial Intelligence (AI) tools have shown great success in different areas of medical diagnostics. In this paper, we show another success in orthodontics. In orthodontics, the right treatment timing of many actions and operations is crucial because many environmental and genetic conditions may modify jaw growth. The stage of growth is related to the Cervical Vertebra Maturation (CVM) degree. Thus, determining the CVM to determine the suitable timing of the treatment is important. In orthodontics, lateral X-ray radiography is used to determine it. Many classical methods need knowledge and time to look and identify some features. Nowadays, ML and AI tools are used for many medical and biological diagnostic imaging. This paper reports on the development of a Deep Learning (DL) Convolutional Neural Network (CNN) method to determine (directly from images) the degree of maturation of CVM classified in six degrees. The results show the performances of the proposed method in different contexts with different number of images for training, evaluation and testing and different pre-processing of these images. The proposed model and method are validated by cross validation. The implemented software is almost ready for use by orthodontists.
Subject
General Physics and Astronomy
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献