Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability

Author:

Keshmiri SoheilORCID,Shiomi Masahiro,Ishiguro Hiroshi

Abstract

Individuals’ ability to express their subjective experiences in terms of such attributes as pleasant/unpleasant or positive/negative feelings forms a fundamental property of their affect and emotion. However, neuroscientific findings on the underlying neural substrates of the affect appear to be inconclusive with some reporting the presence of distinct and independent brain systems and others identifying flexible and distributed brain regions. A common theme among these studies is the focus on the change in brain activation. As a result, they do not take into account the findings that indicate the brain activation and its information content does not necessarily modulate and that the stimuli with equivalent sensory and behavioural processing demands may not necessarily result in differential brain activation. In this article, we take a different stance on the analysis of the differential effect of the negative, neutral and positive affect on the brain functioning in which we look into the whole-brain variability: that is the change in the brain information processing measured in multiple distributed regions. For this purpose, we compute the entropy of individuals’ muti-channel EEG recordings who watched movie clips with differing affect. Our results suggest that the whole-brain variability significantly differentiates between the negative, neutral and positive affect. They also indicate that although some brain regions contribute more to such differences, it is the whole-brain variational pattern that results in their significantly above chance level prediction. These results imply that although the underlying brain substrates for negative, neutral and positive affect exhibit quantitatively differing degrees of variability, their differences are rather subtly encoded in the whole-brain variational patterns that are distributed across its entire activity.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3