Fusion Poser: 3D Human Pose Estimation Using Sparse IMUs and Head Trackers in Real Time

Author:

Kim MeejinORCID,Lee SukwonORCID

Abstract

The motion capture method using sparse inertial sensors is an approach for solving the occlusion and economic problems in vision-based methods, which is suitable for virtual reality applications and works in complex environments. However, VR applications need to track the location of the user in real-world space, which is hard to obtain using only inertial sensors. In this paper, we present Fusion Poser, which combines the deep learning-based pose estimation and location tracking method with six inertial measurement units and a head tracking sensor that provides head-mounted displays. To estimate human poses, we propose a bidirectional recurrent neural network with a convolutional long short-term memory layer that achieves higher accuracy and stability by preserving spatio-temporal properties. To locate a user with real-world coordinates, our method integrates the results of an estimated joint pose with the pose of the tracker. To train the model, we gathered public motion capture datasets of synthesized IMU measurement data, as well as creating a real-world dataset. In the evaluation, our method showed higher accuracy and a more robust estimation performance, especially when the user adopted lower poses, such as a squat or a bow.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. Vicon https://www.vicon.com/

2. OptiTrack https://optitrack.com/

3. DeepPose: Human Pose Estimation via Deep Neural Networks

4. VNect

5. XNect

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Markerless Motion Capture for Humans Through a Multi-UAV System;IEEE Transactions on Instrumentation and Measurement;2024

2. Deep Learning-Based Motion Reconstruction Using Tracker Sensors;Journal of the Korea Computer Graphics Society;2023-12

3. ViWise: Fusing Visual and Wireless Sensing Data for Trajectory Relationship Recognition;ACM Transactions on Internet of Things;2023-11-22

4. Markerless Motion Tracking With Noisy Video and IMU Data;IEEE Transactions on Biomedical Engineering;2023-11

5. SSA Net: Small Scale-Aware Enhancement Network for Human Pose Estimation;Sensors;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3