Decision Trees for Glaucoma Screening Based on the Asymmetry of the Retinal Nerve Fiber Layer in Optical Coherence Tomography

Author:

Berenguer-Vidal RafaelORCID,Verdú-Monedero RafaelORCID,Morales-Sánchez JuanORCID,Sellés-Navarro InmaculadaORCID,Kovalyk OleksandrORCID,Sancho-Gómez José-LuisORCID

Abstract

Purpose: The aim of this study was to analyze the relevance of asymmetry features between both eyes of the same patient for glaucoma screening using optical coherence tomography. Methods: Spectral-domain optical coherence tomography was used to estimate the thickness of the peripapillary retinal nerve fiber layer in both eyes of the patients in the study. These measurements were collected in a dataset from healthy and glaucoma patients. Several metrics for asymmetry in the retinal nerve fiber layer thickness between the two eyes were then proposed. These metrics were evaluated using the dataset by performing a statistical analysis to assess their significance as relevant features in the diagnosis of glaucoma. Finally, the usefulness of these asymmetry features was demonstrated by designing supervised machine learning models that can be used for the early diagnosis of glaucoma. Results: Machine learning models were designed and optimized, specifically decision trees, based on the values of proposed asymmetry metrics. The use of these models on the dataset provided good classification of the patients (accuracy 88%, sensitivity 70%, specificity 93% and precision 75%). Conclusions: The obtained machine learning models based on retinal nerve fiber layer asymmetry are simple but effective methods which offer a good trade-off in classification of patients and simplicity. The fast binary classification relies on a few asymmetry values of the retinal nerve fiber layer thickness, allowing their use in the daily clinical practice for glaucoma screening.

Funder

Instituto de Salud Carlos III

Fundación Seneca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3