Community Attributes Predict the Relationship between Habitat Invasibility and Land Use Types in an Agricultural and Forest Landscape

Author:

Zhou ,Su ,Zhong ,Xie ,Xu ,Su

Abstract

Finding ecosystem or community level indicators for habitat invasibility may provide natural resource managers with environmentally friendly measures to control alien plant invasion; yet, ecosystem invasibility remains understudied. Here, we investigated alien plant invasion into various ecosystems representing different land use types in a subtropical peri-urban area of south China. Four invasive alien species were found from five out of the six ecosystems. Lower plant diversity in both the overstory and understory was consistently associated with more severe alien plant invasion to the ecosystems. The highest total abundance and plot occurrence of the invasive plants were found in the agroforestry ecosystem representing the highest disturbance. At plot scale, an increase in invasion severity was associated with a significant decrease in overstory stem density, species richness, and diversity, but with a significant increase in overstory plant dominance. The understory community attributes in response to the increase in invasion severity followed similar patterns, except that the stem density increased with invasion severity. Higher canopy openness and thus lower leaf area index and greater understory radiation were associated with higher invasion severity of invasive plants to the understory habitat. For predicting total abundance of the invasive species, the most important variable is land use type, while for the abundance of Lantana camara and Mikania micrantha, the most important predictor variable is overstory Berger–Parker index and canopy openness, respectively. Canopy structure and understory gap light regimes were among the most important factors determining the abundance of the worst invasive plant Mikania micrantha. Our results demonstrate that land use types with varying disturbance regimes determine the spatial heterogeneity in plant diversity and community structure, which predicts alien plant invasion and habitat invasibility; and that the severity of alien plant invasion in turn is a good indicator of habitat disturbance across the ecosystems.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3