Magnesium Ingot Stacking Segmentation Algorithm for Industrial Robot Based on the Correction of Image Overexposure Area

Author:

Li Qiguang1ORCID,Zheng Huazheng1,Wang Wensheng1,Li Chenggang2

Affiliation:

1. School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China

2. Jiaxing Worldia Diamond Tools Co., Ltd., Jiaxing 314031, China

Abstract

This paper proposes an adaptive threshold segmentation algorithm for the magnesium ingot stack based on image overexposure area correction (ATSIOAC), which solves the problem of mirror reflection on the surface of magnesium alloy ingots caused by external ambient light and auxiliary light sources. Firstly, considering the brightness and chromaticity information of the mapped image, we divide the exposure probability threshold into weak exposure and strong exposure regions. Secondly, the saturation difference between the magnesium ingot region and the background region is used to obtain a mask for the magnesium ingot region to eliminate interference from the image background. Then, the RGB average of adjacent pixels in the overexposed area is used as a reference to correct the colors of the strongly exposed and weakly exposed areas, respectively. Furthermore, in order to smoothly fuse the two corrected images, pixel weighted average (WA) is applied. Finally, the magnesium ingot sorting experimental device was constructed and the corrected top surface image of the ingot pile was segmented through ATSIOAC. The experimental results show that the overexposed area detection and correction algorithm proposed in this paper can effectively correct the color information in the overexposed area, and when segmenting ingot images, complete segmentation results of the top surface of the ingot pile can be obtained, effectively improving the accuracy of magnesium alloy ingot segmentation. The segmentation algorithm achieves a segmentation accuracy of 94.38%.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3