Fusion of Appearance and Motion Features for Daily Activity Recognition from Egocentric Perspective

Author:

Lye Mohd Haris1,AlDahoul Nouar12,Abdul Karim Hezerul1ORCID

Affiliation:

1. Faculty of Engineering, Multimedia University, Cyberjaya 63100, Selangor, Malaysia

2. Computer Science, New York University, Abu Dhabi P.O. Box 1291888, United Arab Emirates

Abstract

Vidos from a first-person or egocentric perspective offer a promising tool for recognizing various activities related to daily living. In the egocentric perspective, the video is obtained from a wearable camera, and this enables the capture of the person’s activities in a consistent viewpoint. Recognition of activity using a wearable sensor is challenging due to various reasons, such as motion blur and large variations. The existing methods are based on extracting handcrafted features from video frames to represent the contents. These features are domain-dependent, where features that are suitable for a specific dataset may not be suitable for others. In this paper, we propose a novel solution to recognize daily living activities from a pre-segmented video clip. The pre-trained convolutional neural network (CNN) model VGG16 is used to extract visual features from sampled video frames and then aggregated by the proposed pooling scheme. The proposed solution combines appearance and motion features extracted from video frames and optical flow images, respectively. The methods of mean and max spatial pooling (MMSP) and max mean temporal pyramid (TPMM) pooling are proposed to compose the final video descriptor. The feature is applied to a linear support vector machine (SVM) to recognize the type of activities observed in the video clip. The evaluation of the proposed solution was performed on three public benchmark datasets. We performed studies to show the advantage of aggregating appearance and motion features for daily activity recognition. The results show that the proposed solution is promising for recognizing activities of daily living. Compared to several methods on three public datasets, the proposed MMSP–TPMM method produces higher classification performance in terms of accuracy (90.38% with LENA dataset, 75.37% with ADL dataset, 96.08% with FPPA dataset) and average per-class precision (AP) (58.42% with ADL dataset and 96.11% with FPPA dataset).

Funder

Ministry of Higher Education of Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3