Analysis on the Influence of Component Ratio on Properties of Silica/Montmorillonite Nanocomposites

Author:

Jiang Jun,Cao JinzhenORCID,Wang Wang,Mei Changtong

Abstract

Silica/montmorillonite (MMT) nanocomposites (SMCs) were prepared by generating SiO2 nanoparticles on an MMT surface using an organic/inorganic hybrid technique with different ratios of tetraethylorthosilicate (TEOS) to MMT (10:1, 20:1 and 40:1). The hydrolysis and polycondensation reactions were controlled by TEOS when it was incorporated into the internal space of the MMT. The delamination and intercalation of the MMT layers were closely related to the TEOS/MMT ratio. The surface chemistry and particulate morphology, thermal properties, pore structure and hygroscopicity of nanocomposites were investigated. The results showed that silica nanoparticles could be intercalated into a layered MMT and induced a high specific surface area (~474 m2·g−1). At a lower ratio (10:1 and 20:1), the dispersed layers could be created from the stack MMT layers and incorporated into a silica matrix, resulting in an increased thermal stability and a decreased pore size. A higher ratio (40:1) caused the intensive self-condensation of the silanol groups, leading to a negative effect on the sol penetration to the MMT. The hydrophilicity of the SMCs increased significantly due to the synergistic effect of the hydroxyl groups and pore structure caused by silica incorporation. A mechanism concerning the effect of component ratio was also proposed for synthesizing this nanocomposite based on the research results. The potential applications of this heterostructured nanocomposites could be summarized as a desiccant, functional fillers, and pollutant disposal.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3