Non-Isothermal Crystallization Kinetics of Short Glass Fiber Reinforced Poly (Ether Ether Ketone) Composites

Author:

Yang Xujing,Wu Yazhuo,Wei KaiORCID,Fang Wenjun,Sun Haofei

Abstract

Due to its excellent chemical and temperature resistances, short glass fiber reinforced poly (ether ether ketone) composite (SGF/PEEK) is a promising material for application in automotive lightweight. Processing conditions, such as cooling rate, need to be well controlled to obtain the optimal crystallite morphology of PEEK composites. Thus, in this paper, the non-isothermal crystallization kinetics and melting behavior of SGF/PEEK were investigated by differential scanning calorimetry (DSC) at different cooling rates, and the crystallite sizes were evaluated by the X-ray diffraction technique (XRD). Crystallization kinetics models and effective activation energies were evaluated to determine the crystallization parameters of the composites. The results suggest that a lower cooling rate enlarges the size of crystallites and enhances the uniformity of size distribution. The addition of glass fibers improves the nucleation rate owing to heterogeneous nucleation while decreasing the growth rate due to retarded movement of the polymer chain. The combined Avrami-Ozawa equation was shown to describe accurately the non-isothermal crystallization. The absolute value of the crystallization activation energy for SGF/PEEK is lower than that of pure PEEK.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3