Abstract
The pitting corrosion resistance and passive behavior of type 304 borated stainless steels (Febalance–18Cr–12Ni–1.5Mn–(0.19, 0.78, and 1.76 wt %)B) manufactured through conventional ingot metallurgy were investigated. The alloys were composed of an austenitic matrix and Cr2B phase, and the volume fraction of Cr2B increased from 1.68 to 22.66 vol % as the B content increased from 0.19 to 1.76 wt %. Potentiodynamic polarization tests measured in aqueous NaCl solutions revealed that the pitting corrosion resistance was reduced as the B content increased and the pits were initiated at the matrix adjacent to the Cr2B phase. It was found that the reduced resistance to pitting corrosion by B addition was due to the formation of more defective and thinner passive film and increased pit initiation sites in the matrix.
Funder
Korea Institute of Materials Science
Subject
General Materials Science
Reference38 articles.
1. Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications;Machiels,2009
2. Corrosion Resistance of Borated Stainless Steels;Brown,1991
3. High-temperature metallurgy of advanced borated stainless steels
4. Fracture Mechanism of Borated Stainless Steel
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献