Affiliation:
1. School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Tethnology Center of Guangdong Province, Guangzhou 510230, China
Abstract
Herein, a novel, recognition-molecule-free electrode based on Ti3C2/TiO2 composites was synthesized using Ti3C2 as the Ti source and TiO2 in situ formed by oxidation on the Ti3C2 surface for the selective detection of dopamine (DA). The TiO2 in situ formed by oxidation on the Ti3C2 surface not only increased the catalytically active surface for DA binding but also accelerated the carrier transfer due to the coupling between TiO2 and Ti3C2, resulting in a better photoelectric response than pure TiO2. Through a series of experimental conditions optimization, the photocurrent signals obtained by the MT100 electrode were proportional to the DA concentration from 0.125 to 400 µM, with a detection limit estimated at 0.045 µM. We also monitored DA in human blood serum samples using the MT100 electrode. The results showed good recovery, demonstrating the promising use of the sensor for the analysis of DA in real samples.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
University-Industry Collaborative Education Program of Ministry of Education of China
Guangdong Basic and Applied Basic Research Foundation
Department of Science and Techniques of Guangdong Province
Department of Guangdong Provincial Public Security
Science and Technology Projects in Guangzhou
Department of Science & Technology of Guangdong Province
Guangzhou Municipal Science and Technology Bureau
Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau
China Postdoctoral Science Foundation
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献