A Novel SPR Immunosensor Based on Dual Signal Amplification Strategy for Detection of SARS-CoV-2 Nucleocapsid Protein

Author:

Fan Lirui12,Du Bin1,Pei Fubin1,Hu Wei1,Feng Shasha1,Liu Bing1,Tong Zhaoyang1,Tan Wenyuan2,Mu Xihui1

Affiliation:

1. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

2. School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China

Abstract

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3