Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Carboxymethylated Dextran Modified Gold Nanoparticles Surface for High Mobility Group Box 1 (HMGB1) Analysis

Author:

Chiang Chang-Yue1ORCID,Chen Chien-Hsing2ORCID,Wu Chin-Wei1ORCID

Affiliation:

1. Graduate School of Engineering Science and Technology and Interdisciplinary Program of Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

2. Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan

Abstract

Rapid, sensitive, and reliable detection of high mobility group box 1 (HMGB1) is essential for medical and diagnostic applications due to its important role as a biomarker of chronic inflammation. Here, we report a facile method for the detection of HMGB1 using carboxymethyl dextran (CM-dextran) as a bridge molecule modified on the surface of gold nanoparticles combined with a fiber optic localized surface plasmon resonance (FOLSPR) biosensor. Under optimal conditions, the results showed that the FOLSPR sensor detected HMGB1 with a wide linear range (10−10 to 10−6 g/mL), fast response (less than 10 min), and a low detection limit of 43.4 pg/mL (1.7 pM) and high correlation coefficient values (>0.9928). Furthermore, the accurate quantification and reliable validation of kinetic binding events measured by the currently working biosensors are comparable to surface plasmon resonance sensing systems, providing new insights into direct biomarker detection for clinical applications.

Funder

National Science and Technology Council of Taiwan

National Taiwan University of Science and Technology/National Yunlin University of Science and Technology/National Pingtung University of Science and Technology

Office of Research and Development, National Yunlin University of Science and Technology

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3