Layer-by-Layer Combination of MWCNTs and Poly(ferulic acid) as Electrochemical Platform for Hesperidin Quantification

Author:

Yakupova Elvira12ORCID,Mukharlyamova Aisylu2,Fitsev Igor2,Ziyatdinova Guzel1ORCID

Affiliation:

1. Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia

2. Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, Kazan 420075, Russia

Abstract

The electrochemical polymerization of suitable monomers is a powerful way to create voltammetric sensors with improved responses to a target analyte. Nonconductive polymers based on phenolic acids were successfully combined with carbon nanomaterials to obtain sufficient conductivity and high surface area of the electrode. Glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and electropolymerized ferulic acid (FA) were developed for the sensitive quantification of hesperidin. The optimized conditions of FA electropolymerization in basic medium (15 cycles from −0.2 to 1.0 V at 100 mV s−1 in 250 µmol L−1 monomer solution in 0.1 mol L−1 NaOH) were found using the voltammetric response of hesperidin. The polymer-modified electrode exhibited a high electroactive surface area (1.14 ± 0.05 cm2 vs. 0.75 ± 0.03 and 0.089 ± 0.003 cm2 for MWCNTs/GCE and bare GCE, respectively) and decreased in the charge transfer resistance (21.4 ± 0.9 kΩ vs. 72 ± 3 kΩ for bare GCE). Under optimized conditions, hesperidin linear dynamic ranges of 0.025–1.0 and 1.0–10 µmol L−1 with a detection limit of 7.0 nmol L−1 were achieved, which were the best ones among those reported to date. The developed electrode was tested on orange juice and compared with chromatography.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3