Thermodynamic Performance of a Double-Effect Absorption Refrigeration Cycle Based on a Ternary Working Pair: Lithium Bromide + Ionic Liquids + Water

Author:

Li Yiqun,Li Na,Luo Chunhuan,Su Qingquan

Abstract

For an absorption cycle, a ternary working pair LiBr–[BMIM]Cl(2.5:1)/H2O was proposed as a new working pair to replace LiBr/H2O. The thermodynamic properties including specific heat capacity, specific enthalpy, density, and viscosity were systematically measured and fitted by the least-squares method. The thermodynamic performance of a double-effect absorption refrigeration cycle based on LiBr–[BMIM]Cl(2.5:1)/H2O was investigated under different refrigeration temperatures from 5 °C to 12 °C. Results showed that the ternary working pair LiBr–[BMIM]Cl(2.5:1)/H2O had advantages in the operating temperature range and corrosivity. Compared with LiBr/H2O, the operating temperature range was 20 °C larger, and the corrosion rates of carbon steel and copper were reduced by more than 50% at 453.15 K. However, the double-effect absorption refrigeration cycle with LiBr–[BMIM]Cl(2.5:1)/H2O achieved a coefficient of performance (COPc) from 1.09 to 1.46 and an exergetic coefficient of performance (ECOPc) from 0.244 to 0.238, which were smaller than those based on LiBr/H2O due to the higher generation temperature and larger flow ratio.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3