Abstract
The optimal planning of electric vehicle (EV) charging stations (ECSs) with advanced control algorithms is very important to accelerate the development of EVs, which is a promising solution to reduce carbon emissions of conventional internal combustion engine vehicles (ICEVs). The large and fluctuant load currents of ECSs can bring negative impacts to both EV-related power converters and power distribution systems if the energy flow is not regulated properly. Recent review papers related to EVs found in open literature have mainly focused on the design of power converter-based chargers and power interfaces, analyses of power quality (PQ) issues, the development of wireless charging techniques, etc. There is currently no review paper that focuses on key technologies in various system configurations, optimal energy management and advanced control issues in practical applications. To compensate for this insufficiency and provide timely research directions, this paper reviews 143 previously published papers related to the aforementioned topics in recent literature including 17 EV-related review papers found in Institute of Electrical and Electronics Engineers (IEEE)/Institution of Engineering and Technology (IET) (IEEE/IET) Electronic Library (IEL) and ScienceDirect OnSite (SDOS) databases. In this paper, existing system configurations, related design methods, algorithms and key technologies for ECSs are systematically reviewed. Based on discussions given in the reviewed papers, the most popular ECS configuration is a hybrid system design that integrates renewable energy (RE)-based power generation (REBPG), various energy storage systems (ESSs), and utility grids. It is noteworthy that the addition of an ESS with properly designed control algorithms can simultaneously buffer the fast, fluctuant power demand during charging, smooth the intermittent power generation of REBPG, and increase the overall efficiency and operating flexibility of ECSs. In addition, verifying the significance of the flexibility and possible profits that portable ESSs provide in ECS networks is a potential research theme in ECS fields, in which the potential applications of portable ESSs in the grid-tied ECSs are numerous and could cover a full technical spectrum.
Funder
Ministry of Science and Technology, Taiwan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献