Enzymatic Degradation of Fiber-Reinforced PLA Composite Material

Author:

Urinov EldorORCID,Hanstein StefanORCID,Weidenkaff Anke

Abstract

Application of thermoplastic fiber-reinforced lightweight composite materials provides a wide range of advantages that are of particular importance for the mobility sector. UD tapes composed of unidirectionally (UD) oriented inorganic fibers embedded in a thermoplastic matrix represent light-weight materials with high tensile strength. This publication addresses recycling aspects of novel UD tape made of a combination of basalt fibers and different PLA (polylactic acid) formulations. The kinetics of enzyme-based separation of polymer from the fiber were investigated. Different types of UD tapes with a thickness of 270–290 µm reinforced with basalt fiber weight ratios ranging between 51 and 63% were incubated at 37 °C in buffer solution (pH 7.4) containing proteinase K. The influence of enzyme concentration, tape weight per incubation tube, proteinase K activators, and tape types on the rate of enzymatic decomposition was investigated. Enzyme activity was measured by analyzing lactate concentration with lactate dehydrogenase and by measuring weight loss of the composite material. The rate of lactate release increased in the first 30 min of incubation and remained stable for at least 90 min. Weight loss of 4% within 4 h was achieved for a tape with 56% (w/w) fiber content. For a sample with a surface area of 3 cm2 in a buffer volume of 10 mL, the rate of lactate release as a function of enzyme concentration reached saturation at 300 µg enzyme/mL. With this enzyme concentration, the rate of lactate release increased in a linear manner for tape surface areas between 1 and 5 cm2. Four tapes with different PLA types were treated with the enzyme for 17 h. Weight loss ranged between 7 and 24%. Urea at a concentration of 0.5% (w/v) increased lactate release by a factor of 9. Pretreatment of tapes in alkaline medium before enzymatic degradation increased weight loss to 14% compared to 5% without pretreatment. It is concluded that enzymatic PLA hydrolysis from UD tapes is a promising technology for the release of basalt fibers after alkaline pretreatment or for the final cleaning of basalt fibers.

Funder

Fraunhofer Innovation Program Light Materials for Mobility

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3