Recycling of Wood–Plastic Composites—A Reprocessing Study

Author:

Burgstaller Christoph12ORCID,Renner Károly3ORCID

Affiliation:

1. Transfercenter für Kunststofftechnik GmbH, Franz-Fritsch-Straße 11, 4600 Wels, Austria

2. School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria

3. Furukawa Electric Institute of Technology Ltd., Késmárk u. 28/a, H-1158 Budapest, Hungary

Abstract

Wood–plastic composites, consisting of wood particles and a thermoplastic matrix, are common composites often used in buildings as decking boards or for similar non-load-carrying applications. As these are usually semi-finished products, a certain amount of material is available after cutting these to size, in the factory and also at installation sites. Especially for in-house waste streams in factories, the question remains whether these materials can be reprocessed without any negative influence on the materials’ properties. Therefore, the aim of this work is to investigate the influence of reprocessing on the property profile of polypropylene based wood–plastic composites. Two base formulations with 40 wt% of wood particles and two different polypropylene grades were investigated for their mechanical properties, wood particle size, color, weathering stability and water uptake. We found that most of the wood–plastic composites’ properties were not negatively influenced by the multiple processing steps; the most pronounced effect beside particle size reduction is color degradation, as the composites darken with increasing number of processing steps. In our opinion this shows, that wood–plastic composites can be recycled, especially if these are only reprocessed in smaller shares together with virgin materials.

Funder

Upper Austrian government

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3