G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation

Author:

Ribaudo Giovanni1ORCID,Anyanwu Margrate1ORCID,Giannangeli Matteo1ORCID,Oselladore Erika1ORCID,Ongaro Alberto2ORCID,Memo Maurizio1ORCID,Gianoncelli Alessandra1ORCID

Affiliation:

1. Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy

2. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy

Abstract

Guanine-rich sequences of nucleic acids, including DNA and RNA, are known to fold into non-canonical structures named G-quadruplexes (G4s). Such arrangements of these macromolecular polymers are mainly located in telomeres and in promoter regions of oncogenes and, for this reason, they represent a potential target for compounds with therapeutic applications. In fact, the ligand-mediated stabilization of G4s inhibits telomerase and the activity of transcriptional machinery and counteracts cancer cell immortalization. Flavonoids, along with other classes of small molecules, have been previously tested for their ability to stabilize G4s, but the mechanism of their interaction has not been fully elucidated. In the current work, we report a multi-technique investigation on the binding of tosylated isoflavones obtained by the B-ring modification of compounds from Maclura pomifera to a telomeric DNA sequence. Our study demonstrates that such derivatization leads to compounds showing lower binding affinity but with an increased selectivity toward G4 with respect to double-stranded DNA. The binding mode to the macromolecular target G4 was studied by combining results from electrospray mass spectrometry binding studies, nuclear magnetic resonance experiments and computational simulations. Overall, our findings show that tosylation influences the selectivity toward the macromolecular target by affecting the interaction mode with the nucleic acid.

Funder

University of Brescia and Regione Lombardia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3