Influencing the Shape Recovery and Thermomechanical Properties of 3DP PLA Using Smart Textile and Boehmite Alumina and Thermochromic Dye Modifiers

Author:

Makwakwa Dimakatso,Motloung Mpho Phillip,Ojijo Vincent,Bandyopadhyay JayitaORCID,Ray Suprakas SinhaORCID

Abstract

The technology of 4DP utilizes shape memory materials (SMMs). Among the SMMs, SMP is the material that has potential and is ideal for this technology. However, due to their restrictions, fillers are incorporated to produce a novel shape memory polymer composite (SMPC). The objective of the present work was to investigate how the modification of PLA via the incorporation of boehmite alumina and thermochromic dye, and the use of 3DP on polyester fabric to make smart material textiles (SMT), influenced the shape-memory properties of printed objects. SMPCs with 3 wt% BA particles were prepared by means of the fused deposition modelling (FDM) process, with heat used as an actuation. It was demonstrated that sample thickness and the method of PLA modification affected the shape recovery of 3D-printed objects. All neat PLA samples recovered their angle fully for all thicknesses, while modified PLA incorporated with BA particles and dye recovered its initial angle fully at 1 mm thickness and showed less recovery for 1.5- and 2 mm-thicknesses. The 1 mm-thick sample was then chosen for printing onto the textile material for all samples. When printed onto the fabric, the neat PLA and SMPCs recovered their initial shapes fully, while samples with the dye added into the PLA and SMPC did not recover their initial shape fully due to the presence of the dye, which hindered the movement of the polymer chains. SEM revealed good layer bonding for the SMPCs compared to the neat PLA, which led to improved mechanical properties. The thermal stability of PLA was improved by the BA particles; furthermore, the dye and BA particles nucleated the crystallization of PLA, resulting in an enhanced storage modulus. Overall, a biodegradable 3D-printed object of 1 mm in thickness with improved thermal and mechanical properties was produced, with and without the use of the textile.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3