Nanocellulose/Nanodiamond Hybrids: A Review

Author:

Uşurelu Cătălina Diana1,Panaitescu Denis Mihaela1ORCID

Affiliation:

1. National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania

Abstract

Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating different metals, metal oxides or carbon nanomaterials, with the formation of multifunctional hybrids. Nanocellulose–nanocarbon hybrids are emerging nanomaterials that can respond to many current challenges in areas such as water purification, energy storage and conversion, or biomedicine for drug delivery, tissue engineering, antitumor and antimicrobial therapies, and many others. Although nanocellulose–nanodiamonds hybrids are still in their infancy, these nanomaterials are extremely promising for applications requiring good thermal conductivity and mechanical strength along with optical transparency. A strong increase in the thermal conductivity of a nanocellulose film of about 150 times was obtained after the addition of 90 wt% single-crystal nanodiamonds and a 70% increase in the Young’s modulus of nanocellulose films was produced by the addition of 5 wt% nanodiamonds. Therefore, in this review, data related to the manufacturing routes, main properties, and applications of nanocellulose–nanodiamonds hybrids are presented and discussed. This review paves the way for new methods and procedures to obtain nanocellulose–nanodiamonds hybrids better adapted to practical needs.

Funder

Ministry of Research, Innovation and Digitization−UEFISCDI

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3