Development of Water-Resistant Autohesive Strength of Polyethylene Plates with Photografting of Alkyl (Meth)Acrylates

Author:

Yamada Kazunori1ORCID,Kazama Yuki2,Kimura Yuji1

Affiliation:

1. Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan

2. Major of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan

Abstract

This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the location of grafting was restricted to the outer surface region and the grafted layer with higher densities of grafted PMMA chains was composed. When the grafted PE plates were immersed in 1,4-dioxane, and then heat-pressed while applying the load, autohesion was developed. The substrate failure was observed for the PE-g-PMMA plates and the grafted amount at which the substrate failure was observed decreased with the procedures that decreased the methanol concentration of the solvent, the MMA concentration, the grafting temperature, and the heat-press temperature, and/or increased the load. The lowest grafted amount of 45 μmol/cm2 for the substrate failure was obtained under the conditions where the PE-g-PMMA plate prepared at 0.75 M and 60 °C in a 70 vol% aqueous methanol solution was heat-pressed at 60 °C while applying the load of 2.0 kg/cm2. The swelling of the grafted layers with 1,4-dioxane considerably contributed to the development of autohesion, bringing the inter-diffusion of grafted PMMA chains and coincident entanglement of grafted PMMA chains during the heat-pressing. The fact that the substrate failure occurred indicates that an autohesive strength higher than the ultimate strength of the used PE plate was obtained. Our approach provides a novel procedure to develop the water-resistant autohesion of PE plates.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3