Characterization of Secondary Metabolites Responsible for the Resistance of Local Tomato Accessions to Whitefly (Bemisia tabaci, Gennadius 1889) Hemiptera in Tanzania

Author:

Mrosso Secilia E.ORCID,Ndakidemi Patrick A.,Mbega Ernest R.

Abstract

Plants have developed mechanisms to cope with stresses in their environments as they grow in diverse settings. Such means include releasing plant defense compounds upon attacks by pests or other stressors. Plants with these characteristics are essential as a plant germplasm source for breeding resistance against herbivores and insect pests. Therefore, this study aimed to screen germplasms for whitefly resistance and characterize the secondary metabolites responsible for this. Thirty local tomato accessions were screened for resistance against whiteflies (Bemisia tabaci Gennadius) in the screen house located at Tanzania Plant Health and Pesticides Authority (PTHPA) between January and April 2021. From this screening, seven local tomato cultivars: TZA3729, TZA5554, TZA5545, TZA5562, TZA5552, TZA3177 and TZA5157, showed resistance, and one accession (TZA5496) that showed susceptibility to whiteflies (negative control) and accession V1030462 that was a standard (positive control) were selected for the subsequent experiments. The experiment was conducted in July–October 2021 in the screen house at TPHPA and repeated in January–April 2022 using a completely randomized block design with three replications. From this experiment, three accessions: TZA3729, TZA5562 and TZA5157, showed resistance against whiteflies. However, accession TZA3729 was more resistant than TZA5562 and TZA5157 when compared to the resistant accession V1030462. Therefore, these accessions were further screened for secondary metabolites responsible for resistance against herbivores and insect pests—in this case, whiteflies. The GS-MS methanol extract results showed accession TZA3729 to possess a wide array of secondary plant metabolites responsible for plant self-defenses, such as diterpenes, Tetraterpenes, alkaloids, carotenoids and fatty acid esters. Therefore, the study recommends accession TZA3729 as a source of tomato plant germplasm for breeding tomatoes resistant to whiteflies.

Publisher

MDPI AG

Subject

General Arts and Humanities

Reference46 articles.

1. Tomato breeding in sub-Saharan Africa-Challenges and opportunities: A review;Afr. Crop Sci. J.,2020

2. Practice, Ecological limits and management practices of major arthropod pests of tomato in Kenya;J. Agric. Sci. Pract.,2019

3. Resistance of certain wild tomato (Solanum spp.) accessions to Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) based on choice and no-choice bioassays;Fla. Entomol.,2019

4. Efficacy of some novel insecticides against whitefly (Bemisia tabaci Gennadius) in Brinjal;J. Entomol. Zool. Stud.,2017

5. Bio-rational management of whitefly (Bemisia tabaci) for suppressing tomato yellow leaf curl virus;J. Agril. Res.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3