A Simple, Reusable and Low-Cost LVDT-Based in Situ Bolt Preload Monitoring System during Fastening for a Truck Wheel Assembly

Author:

Jang Shin,Nam Juhyun,Lee Samgon,Oh Je

Abstract

The aim of this study is to design and test a new, simple, and reusable linear variable differential transformer (LVDT)-based in situ bolt preload monitoring system (L-PMS) during fastening of a truck wheel assembly. Instead of measuring the elongation of a bolt, the distance between the end surfaces of both the bolt and nut was monitored via the L-PMS. The distance obtained from the L-PMS was experimentally correlated with the actual preload measured by a washer-type load cell. Since the variation of the distance is related to the stiffness of the bolt and clamped parts, a finite element analysis was also conducted to predict the sensitivity of L-PMS. There was a strong linear relationship between the distance and bolt preload after the bolt and nut were fully snugged. However, a logarithm-shaped nonlinear relationship was irregularly observed before getting snugged, making it difficult to define a clear relationship. In order to tackle this issue, an arc-shaped conductive line was screen-printed onto the surface of the clamped parts using a conductive carbon paste. The results show that a resistance variation of the conductive line during fastening enables to determine the snug point, so the L-PMS combined with resistance measurement results in an approximately ±6% error in the measurement of bolt preload. The proposed L-PMS offers a simple but highly reliable way for measuring bolt preload during fastening, which could be utilized in a heavy-truck production line.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3