Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells

Author:

Dang Jinye1,Zhang Gongrui1,Li Jingjing1ORCID,He Libo12,Ding Yi1,Cai Jiaxiu1,Cheng Guohua1,Yang Yuhui1,Liu Zhiyi1,Fan Jiahui1,Du Linfang1,Liu Ke1ORCID

Affiliation:

1. Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

2. College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

Abstract

Neem leaves have long been used in traditional medicine for promoting longevity. However, the precise mechanisms underlying their anti-aging effects remain elusive. In this study, we investigated the impact of neem leaf extract (NLE) extracted from a 50% ethanol solution on the chronological lifespan of Saccharomyces cerevisiae, revealing an extension in lifespan, heightened oxidative stress resistance, and a reduction in reactive oxygen species. To discern the active compounds in NLE, LC/MS and the GNPS platform were employed. The majority of identified active compounds were found to be flavonoids. Subsequently, compound-target pharmacological networks were constructed using the STP and STITCH platforms for both S. cerevisiae and Homo sapiens. GOMF and KEGG enrichment analyses of the predicted targets revealed that “oxidoreductase activity” was among the top enriched terms in both yeast and human cells. These suggested a potential regulation of oxidative stress response (OSR) by NLE. RNA-seq analysis of NLE-treated yeast corroborated the anti-oxidative effect, with “oxidoreductase activity” and “oxidation-reduction process” ranking high in enriched GO terms. Notably, CTT1, encoding catalase, emerged as the most significantly up-regulated gene within the “oxidoreductase activity” cluster. In a ctt1 null mutant, the enhanced oxidative stress resistance and extended lifespan induced by NLE were nullified. For human cells, NLE pretreatment demonstrated a decrease in reactive oxygen species levels and senescence-associated β-galactosidase activity in HeLa cells, indicative of anti-aging and anti-oxidative effects. This study unveils the anti-aging and anti-oxidative properties of NLE while delving into their mechanisms, providing novel insights for pharmacological interventions in aging using phytochemicals.

Funder

Nature Science Foundation of Sichuan, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3